Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.215
Filtrar
1.
Cell Rep ; 43(4): 114106, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625795

RESUMO

Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fenóis , Pseudomonas aeruginosa , Sideróforos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Ferro/metabolismo , Tiazóis/metabolismo
2.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523338

RESUMO

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Assuntos
Bacillus subtilis , Panax , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Panax/química , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo
3.
Apoptosis ; 29(5-6): 865-881, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38145442

RESUMO

The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Apoptose/efeitos dos fármacos , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Adesão Celular/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/química , Camundongos Endogâmicos BALB C , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/genética
4.
Front Cell Infect Microbiol ; 13: 1123393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743308

RESUMO

Introduction: Candida albicans is an opportunistic pathogenic fungus, which frequently causes systemic or local fungal infections in humans. The evolution of its drug-resistant mutants necessitate an urgent development of novel antimicrobial agents. Results: Here, we explored the antimicrobial activity and inhibitory mechanisms of X33 antimicrobial oligopeptide (X33 AMOP) against C. albicans. The oxford cup test results showed that X33 AMOP had strong inhibitory activity against C. albicans, and its MIC and MFC were 0.625 g/L and 2.5 g/L, respectively. Moreover, SEM and TEM showed that X33 AMOP disrupted the integrity of cell membrane. The AKP, ROS, H2O2 and MDA contents increased, while the reducing sugar, soluble protein, and pyruvate contents decreased after the X33 AMOP treatment. This indicated that X33 AMOP could damage the mitochondrial integrity of the cells, thereby disrupting the energy metabolism by inducing oxidative stress in C. albicans. Furthermore, transcriptome analysis showed that X33 AMOP treatment resulted in the differential expression of 1140 genes, among which 532 were up-regulated, and 608 were down-regulated. These DEGs were related to protein, nucleic acid, and carbohydrate metabolism, and their expression changes were consistent with the changes in physiological characteristics. Moreover, we found that X33 AMOP could effectively inhibit the virulence attributes of C. albicans by reducing phospholipase activity and disrupting hypha formation. Discussion: These findings provide the first-ever detailed reference for the inhibitory mechanisms of X33 AMOP against C. albicans and suggest that X33 AMOP is a potential drug candidate for treating C. albicans infections.


Assuntos
Anti-Infecciosos , Candida albicans , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Antifúngicos/farmacologia , Perfilação da Expressão Gênica , Anti-Infecciosos/farmacologia , Oligopeptídeos/genética
5.
Eur J Neurosci ; 58(2): 2641-2652, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36669790

RESUMO

NAP (NAPVSIPQ, drug candidate name, davunetide) is the neuroprotective fragment of activity-dependent neuroprotective protein (ADNP). Recent studies identified NAPVSIP as a Src homology 3 (SH3) domain-ligand association site, responsible for controlling signalling pathways regulating the cytoskeleton. Furthermore, the SIP motif in NAP/ADNP was identified as crucial for direct microtubule end-binding protein interaction facilitating microtubule dynamics and Tau microtubule interaction, at the microtubule end-binding protein site EB1 and EB3. Most de novo ADNP mutations reveal heterozygous STOP or frameshift STOP aberrations, driving the autistic/intellectual disability-related ADNP syndrome. Here, we report for the first time on a de novo missense mutation, resulting in ADNP containing NAPVISPQE instead of NAPVSIPQQ, in a child presenting developmental hypotonia, possibly associated with inflammation affecting food intake in early life coupled with fear of peer interactions and suggestive of a novel case of the ADNP syndrome. In silico modelling showed that the mutation Q (polar side chain) to E (negative side chain) affected the electrostatic characteristics of ADNP (reducing, while scattering the electrostatic positive patch). Comparison with the most prevalent pathogenic ADNP mutation, p.Tyr719*, indicated a further reduction in the electrostatic patch. Previously, exogenous NAP partially ameliorated deficits associated with ADNP p.Tyr719* mutations in transfected cells and in CRISPR/Cas9 genome edited cell and mouse models. These findings stress the importance of the NAP sequence in ADNP and as a future putative therapy for the ADNP syndrome.


Assuntos
Proteínas do Tecido Nervoso , Mutação Puntual , Camundongos , Animais , Proteínas do Tecido Nervoso/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Microtúbulos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
6.
Am J Med Genet A ; 191(2): 338-347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331261

RESUMO

The introduction of clinical exome sequencing (ES) has provided a unique opportunity to decrease the diagnostic odyssey for patients living with a rare genetic disease (RGD). ES has been shown to provide a diagnosis in 29%-57% of patients with a suspected RGD, with as many as 70% remaining undiagnosed. There is a need to advance the clinical model of care by more formally integrating approaches that were previously considered research into an enhanced diagnostic workflow. We developed an Exome Clinic, which set out to evaluate a workflow for improving the diagnostic yield of ES for patients with an undiagnosed RGD. Here, we report the outcomes of 47 families who underwent clinical ES in the first year of the clinic. The diagnostic yield from clinical ES was 40% (19/47). Families who remained undiagnosed after ES had the opportunity for follow-up studies that included phenotyping and candidate variant segregation in relatives, genomic matchmaking, and ES reanalysis. This enhanced diagnostic workflow increased the diagnostic yield to 55% (26/47), predominantly through the resolution of variants and genes of uncertain significance. We advocate that this approach be integrated into mainstream clinical practice and highlight the importance of a coordinated translational approach for patients with RGD.


Assuntos
Genômica , Doenças Raras , Humanos , Sequenciamento do Exoma , Canadá , Doenças Raras/diagnóstico , Doenças Raras/genética , Oligopeptídeos/genética , Testes Genéticos
7.
Gen Comp Endocrinol ; 330: 114145, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244431

RESUMO

The adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic hormone (AKH). Unlike the AKH and CRZ signaling systems that are widely known for their roles in the mobilization of energy substrates and stress responses, respectively, the main role of ACP and its receptor (ACPR) remains unclear in most arthropods. The current study aimed to localize the distribution of ACP in the nervous system and provide insight into its physiological roles in the disease vector mosquito, Aedes aegypti. Immunohistochemical analysis and fluorescence in situ hybridization localized the ACP peptide and transcript within a number of cells in the central nervous system, including two pairs of laterally positioned neurons in the protocerebrum of the brain and a few ventrally localized neurons within the pro- and mesothoracic regions of the fused thoracic ganglia. Further, extensive ACP-immunoreactive axonal projections with prominent blebs and varicosities were observed traversing the abdominal ganglia. Given the prominent enrichment of ACPR expression within the abdominal ganglia of adult A. aegypti mosquitoes as determined previously, the current results indicate that ACP may function as a neurotransmitter and/or neuromodulator facilitating communication between the brain and posterior regions of the nervous system. In an effort to elucidate a functional role for ACP signaling, biochemical measurement of energy substrates in female mosquitoes revealed a reduction in abdominal fat body in response to ACP that matched the actions of AKH, but interestingly, a corresponding hypertrehalosaemic effect was only found in response to AKH since ACP did not influence circulating carbohydrate levels. Comparatively, both ACP and AKH led to a significant increase in haemolymph carbohydrate levels in male mosquitoes while both peptides had no influence on their glycogen stores. Neither ACP nor AKH influenced circulating or stored lipid levels in both male and female mosquitoes. Collectively, these results reveal ACP signaling in mosquitoes may have complex sex-specific actions, and future research should aim to expand knowledge on the role of this understudied neuropeptide.


Assuntos
Aedes , Hormônios de Inseto , Neuropeptídeos , Humanos , Animais , Masculino , Feminino , Aedes/genética , Aedes/metabolismo , Hibridização in Situ Fluorescente , Mosquitos Vetores , Filogenia , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Carboidratos
8.
Cell Rep ; 40(3): 111075, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858547

RESUMO

The balance between cell proliferation and differentiation in the cambium defines the formation of plant vascular tissues. As cambium cells proliferate, subsets of daughter cells differentiate into xylem or phloem. TDIF-PXY/TDR signaling is central to this process. TDIF, encoded by CLE41 and CLE44, activates PXY/TDR receptors to maintain proliferative cambium. Light and water are necessary for photosynthesis; thus, vascular differentiation must occur upon light perception to facilitate the transport of water and minerals to the photosynthetic tissues. However, the molecular mechanism controlling vascular differentiation in response to light remains elusive. In this study we show that the accumulation of PIF transcription factors in the dark promotes TDIF signaling and inhibits vascular cell differentiation. On the contrary, PIF inactivation by light leads to a decay in TDIF activity, which induces vascular cell differentiation. Our study connects light to vascular differentiation and highlights the importance of this crosstalk to fine-tune water transport.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Oligopeptídeos/genética , Água , Xilema/metabolismo
9.
Front Cell Infect Microbiol ; 12: 892220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586252

RESUMO

The bacterial agent of Lyme disease, Borrelia burgdorferi, relies on an intricate gene regulatory network to transit between the disparate Ixodes tick vector and mammalian host environments. We recently reported that a B. burgdorferi mutant lacking a transcriptionally active intergenic region of lp17 displayed attenuated murine tissue colonization and pathogenesis due to altered expression of multiple antigens. In this study, a more detailed characterization of the putative regulatory factor encoded by the intergenic region was pursued. In cis complemented strains featuring mutations aimed at eliminating potential protein translation were capable of full tissue colonization, suggesting that the functional product encoded by the intergenic region is not a protein as previously predicted. In trans complementation of the intergenic region resulted in elevated transcription of the sequence compared to wild type and was found to completely abolish infectivity in both immunocompetent "and immunodeficient mice. Quantitative analysis of transcription of the intergenic region by wild-type B. burgdorferi showed it to be highly induced during murine infection relative to in vitro culture. Lastly, targeted deletion of this intergenic region resulted in significant changes to the transcriptome, including genes with potential roles in transmission and host adaptation. The findings reported herein strongly suggest that this segment of lp17 serves a potentially critical role in the regulation of genes required for adaptation and persistence of the pathogen in a mammalian host.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , DNA Intergênico/genética , Adaptação ao Hospedeiro , Ixodes/microbiologia , Doença de Lyme/genética , Doença de Lyme/metabolismo , Doença de Lyme/microbiologia , Camundongos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo
10.
Bioengineered ; 13(4): 10482-10492, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441569

RESUMO

Xylanases are widely used in the degradation of lignocellulose and are important industrial enzymes. Therefore, increasing the catalytic activity of xylanases can improve their efficiency and performance. In this study, we introduced the C-terminal proline-rich oligopeptide of the rumen-derived XynA into XylR, a GH10 family xylanase. The optimum temperature and pH of the fused enzyme (XylR-Fu) were consistent with those of XylR; however, its catalytic efficiency was 2.48-fold higher than that of XylR. Although the proline-rich oligopeptide did not change the enzyme hydrolysis mode, the amount of oligosaccharides released from beechwood xylan by XylR-Fu was 17% higher than that released by XylR. This increase may be due to the abundance of proline in the oligopeptide, which plays an important role in substrate binding. Furthermore, circular dichroism analysis indicated that the proline-rich oligopeptide might increase the rigidity of the overall structure, thereby enhancing the affinity to the substrate and catalytic activity of the enzyme. Our study shows that the proline-rich oligopeptide enhances the catalytic efficiency of GH10 xylanases and provides a better understanding of the C-terminal oligopeptide-function relationships. This knowledge can guide the rational design of GH10 xylanases to improve their catalytic activity and provides clues for further applications of xylanases in industry.


Assuntos
Endo-1,4-beta-Xilanases , Prolina , Animais , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Oligopeptídeos/genética , Especificidade por Substrato , Xilanos/metabolismo
11.
Mol Cell Endocrinol ; 550: 111644, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429598

RESUMO

BACKGROUND: Autoimmune thyroid diseases (AITDs) are chronic autoimmune diseases specific to thyroid and mainly include Graves' disease (GD) and Hashimoto' thyroiditis (HT). The adaptive immunoreactivity of CD4+ T cells plays a crucial role in the pathogenesis of AITDs, but very little has been known about its changes in disease status. METHODS: We collected peripheral CD4+ T cells from 12 GD patients, including 6 newly diagnosed GD (NGD) and 6 refractory GD (RGD) patients, 6 HT patients and 6 healthy controls, and examined the gene expression profiles and colon types of T cells receptor (TCR) ß chain complementarity determining region 3 (CDR3) using high-throughput sequencing. RESULTS: The TCR repertoire were significantly expanded in AITDs groups, and some TCR genes were expressed more preferentially in AITDs group than in the healthy control group, including TRBV15 (P = 0.001), TRBV4-2 (P = 0.003), TRBV9 (P = 0.007), TRBV3-2 (P = 0.012), TRBV7-8 (P = 0.015), TRBV25-1 (P = 0.019), TRBV12-4 (P = 0.019) and TRBV27 (P = 0.02) in GD patients as well as TRBV29-1 (P = 0.004), TRBV12-4 (P = 0.004), TRBV6-5 (P = 0.011), TRBV7-2 (P = 0.012), TRBV27 (P = 0.012), TRBV9 (P = 0.031) and TRBV4-2 (P = 0.032) in HT patients. Moreover, subgroup analysis showed that the difference in the TCR spectrum between the normal group and NGD was not obvious, but a large number of differential genes appeared in the RGD group. CONCLUSION: TCR spectrum has changed in patients with AITDs with expanded repertoire and many upregulated TRBV genes. Moreover, this difference is not apparent in GD patients at the initial stage, but as the disease progresses, the differences in TCR profiles became more pronounced.


Assuntos
Doenças Autoimunes , Doença de Graves , Doença de Hashimoto , Doenças Autoimunes/genética , Doença de Graves/genética , Doença de Graves/patologia , Doença de Hashimoto/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oligopeptídeos/genética , Receptores de Antígenos de Linfócitos T/genética
12.
Nat Commun ; 13(1): 692, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121731

RESUMO

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Assuntos
Proteínas de Drosophila/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hormônios Gastrointestinais/metabolismo , Homeostase , Nutrientes/metabolismo , Somatostatina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/genética , Técnicas de Inativação de Genes , Humanos , Hipoglicemia/genética , Hipoglicemia/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Somatostatina/genética , Análise de Sobrevida
13.
Protein Expr Purif ; 189: 105991, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628000

RESUMO

Advances in structural biology have been fueled in part by developing techniques for large-scale heterologous expression and purification of proteins. Nevertheless, this step is still a bottleneck in biophysical studies of many proteins. Often, fusion proteins are used to increase expression levels, solubility, or both. Here, we compare a recently reported fusion tag, NT*, with Maltose Binding Protein (MBP), a well-known fusion tag and solubility enhancer. NT* shows high expression and solubility when used as an N-terminal fusion partner for several aggregation-prone peptides. Its efficacy in enhancing the solubility of aggregation-prone globular proteins has, however, not been tested. We find here that although the overall expression levels for NT* fusions are much higher than those for the MBP fusion, MBP was far superior for enhancing the solubility of the passenger protein. Nevertheless, the effective yield after purification from the soluble fraction of both MBP-fusion and NT*-fusion was comparable, mainly due to higher expression levels in NT*-fusion and a smaller fraction of the passenger protein net weight being locked in the fusion protein. We conclude that NT* is an excellent fusion tag to improve the overall expression of globular proteins but does not increase the passenger protein's solubility compared to MBP. Proteins that are partially soluble or can be refolded in-vitro will significantly benefit from N-terminal NT* fusions. MBP, however, still remains one of the very few options for an N-terminal fusion if the solubility of the protein after expression is critical for preserving its proper fold or activity.


Assuntos
Fosfatases de Especificidade Dupla/genética , Endopeptidases/genética , Proteínas de Fluorescência Verde/genética , Proteínas Ligantes de Maltose/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Proteínas Recombinantes de Fusão/genética , Tetra-Hidrofolato Desidrogenase/genética , Clonagem Molecular , Fosfatases de Especificidade Dupla/metabolismo , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Ligantes de Maltose/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Protein Expr Purif ; 189: 105989, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626801

RESUMO

Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis. Fortilin is unique because it provides a novel drug target for atherosclerosis that goes beyond lowering cholesterol and utilization of a solution nuclear magnetic resonance (NMR) spectroscopy, structure-based drug discovery approach requires milligram quantities of pure, bioactive, recombinant fortilin. Here, we designed expression constructs with different affinity tags and protease cleavage sites to find optimal conditions to obtain the quantity and purity of protein necessary for structure activity relationship studies. Plasmids encoding fortilin with maltose binding protein (MBP), 6-histidine (6His) and glutathione-S-transferase (GST), N- terminal affinity tags were expressed and purified from Escherichia coli (E. coli). Cleavage sites with tobacco etch virus (TEV) protease and human rhinovirus (HRV) 3C protease were assessed. Despite high levels of expression of soluble protein, the fusion constructs were resistant to proteinases without the inclusion of amino acids between the cleavage site and N-terminus. We surveyed constructs with increasing lengths of glycine/serine (GGS) linkers between the cleavage site and fortilin and found that inclusion of at least one GGS insert led to successful protease cleavage and pure fortilin with conserved binding to calcium as measured by NMR.


Assuntos
Cálcio/química , Proteínas Recombinantes de Fusão/genética , Proteína Tumoral 1 Controlada por Tradução/genética , Proteases Virais 3C/química , Sítios de Ligação , Cálcio/metabolismo , Clonagem Molecular , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Proteína Tumoral 1 Controlada por Tradução/química , Proteína Tumoral 1 Controlada por Tradução/metabolismo
15.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962983

RESUMO

Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Oligopeptídeos/fisiologia , Oryzias , Ácido Pirrolidonocarboxílico/análogos & derivados , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Química Encefálica , Feminino , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Masculino , Neurônios/química , Neurônios/fisiologia , Oligopeptídeos/análise , Oligopeptídeos/genética , Filogenia , Ácido Pirrolidonocarboxílico/análise , Alinhamento de Sequência
16.
J Ethnopharmacol ; 285: 114840, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800646

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese formula, Liujunzi Decoction (LJZD) originated from the Yi Xue Zheng Zhuan, and has a promising effect in treating chemotherapy-induced anorexia (CIA). AIM OF THE STUDY: The present study aims to investigate whether LJZD acts on interleukin-6 (IL-6)/leptin mediated janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway that regulates hypothalamus anorexigenic and orexigenic peptides to ameliorate CIA, and also elucidates the potential mechanism by metabolomic analysis. MATERIALS AND METHODS: Network pharmacology analyses were conducted to screen out potential targets and pathways. The CIA rat model was established via an intraperitoneal injection of cisplatin. The histological changes of gastric antrum, liver and ileum were observed by HE staining. The serum levels of leptin, ghrelin, IL-6 and growth differentiation factor 15 (GDF15) were measured by ELISA. The JAK1/2 and STAT levels in gastric antrum and hypothalamus were detected by Western blot. The transcriptions of gastric antrum and hypothalamus IL-6R mRNA, and hypothalamus cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC), thyrotropin-releasing hormone (TRH), upregulated orexigenic peptides neuropeptide Y (NPY), and agouti-related protein (AGRP) mRNA were assessed by RT-qPCR. The blood samples of control, model and high dose LJZD groups were analyzed by metabolomic. RESULTS: Network pharmacology highlighted the IL-6/leptin mediated JAK-STAT signaling pathway, which regulated downstream anorexigenic and orexigenic peptides in hypothalamus. LJZD ameliorated CIA via stimulating food intake and water consumption in rats. Cisplatin-induced gastric antrum, liver, ileum injuries were ameliorated, serum leptin level reduction was elevated, and ghrelin, IL-6, GDF15 level increases were decreased after LJZD treatments. In gastric antrum and hypothalamus, LJZD inhibited cisplatin-induced activation of JAK-STAT signaling pathway, downregulated the transcriptions of downstream anorexigenic peptides CART, POMC, TRH, and upregulated orexigenic peptides NPY, AGRP in hypothalamus. Importantly, the effect of LJZD in treating CIA might partly relate to the improvements of 23 abnormal metabolites. CONCLUSION: This study implies that inhibiting JAK-STAT signaling pathway, regulating the expressions of anorexigenic and orexigenic peptides, and mediating various metabolic pathways might be potential mechanisms of LJZD's effect against CIA.


Assuntos
Anorexia/tratamento farmacológico , Cisplatino/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Janus Quinases/metabolismo , Fitoterapia , Fatores de Transcrição STAT/metabolismo , Animais , Anorexia/induzido quimicamente , Antineoplásicos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Janus Quinases/genética , Masculino , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/genética , Transdução de Sinais/efeitos dos fármacos
17.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833901

RESUMO

A recombinant formulation of silk fibroin containing the arginine-glycine-aspartic acid (RGD) cell-binding motif (RGD-fibroin) offers potential advantages for the cultivation of corneal cells. Thus, we investigated the growth of corneal stromal cells and epithelial cells on surfaces created from RGD-fibroin, in comparison to the naturally occurring Bombyx mori silk fibroin. The attachment of cells was compared in the presence or absence of serum over a 90 min period and analyzed by quantification of dsDNA content. Stratification of epithelial cells on freestanding membranes was examined by confocal fluorescence microscopy and optimized through use of low molecular weight poly(ethylene glycol) (PEG; 300 Da) as a porogen, the enzyme horseradish peroxidase (HRP) as a crosslinking agent, and stromal cells grown on the opposing membrane surface. The RGD-fibroin reduced the tendency of stromal cell cultures to form clumps and encouraged the stratification of epithelial cells. PEG used in conjunction with HRP supported the fabrication of more permeable freestanding RGD-fibroin membranes, that provide an effective scaffold for stromal-epithelial co-cultures. Our studies encourage the use of RGD-fibroin for corneal cell culture. Further studies are required to confirm if the benefits of this formulation are due to changes in the expression of integrins, components of the extracellular matrix, or other events at the transcriptional level.


Assuntos
Córnea/citologia , Fibroínas/química , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Bombyx/química , Bombyx/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Substância Própria/citologia , Epitélio Corneano/citologia , Fibroínas/genética , Humanos , Limbo da Córnea/citologia , Membranas Artificiais , Microscopia Confocal , Oligopeptídeos/química , Oligopeptídeos/genética , Permeabilidade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Engenharia Tecidual
18.
Biomed Res Int ; 2021: 1124055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812407

RESUMO

Autoimmune disorder is a chronic immune imbalance which is developed through a series of pathways. The defect in B cells, T cells, and lack of self-tolerance has been greatly associated with the onset of many types of autoimmune complications including rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple sclerosis, and chronic inflammatory demyelinating polyneuropathy. The SLE is an autoimmune disease with a common type of lupus that causes tissue and organ damage due to the wide spread of inflammation. In the current study, twenty anti-inflammatory peptides derived from plant and animal sources were docked as ligands or peptides counter to proinflammatory cytokines. Interferon gamma (IFN-γ), interleukin 3 (IL-3), and tumor necrosis factor alpha (TNF-α) were targeted in this study as these are involved in the pathogenesis of SLE in many clinical studies. Two docking approaches (i.e., protein-ligand docking and peptide-protein docking) were employed in this study using Molecular Operating Environment (MOE) software and HADDOCK web server, respectively. Amongst docked twenty peptides, the peptide DEDTQAMMPFR with S-score of -11.3018 and HADDOCK score of -10.3 ± 2.5 kcal/mol showed the best binding interactions and energy validation with active amino acids of IFN-γ protein in both docking approaches. Depending upon these results, this peptide could be used as a potential drug candidate to target IFN-γ, IL-3, and TNF-α proteins to control inflammatory events. Other peptides (i.e., QEPQESQQ and FRDEHKK) also revealed good binding affinity with IFN-γ with S-scores of -10.98 and -10.55, respectively. Similarly, the peptides KHDRGDEF, FRDEHKK, and QEPQESQQ showed best binding interactions with IL-3 with S-scores of -8.81, -8.64, and -8.17, respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Interferon gama/antagonistas & inibidores , Interleucina-3/antagonistas & inibidores , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Oligopeptídeos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Descoberta de Drogas/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia
19.
J Am Chem Soc ; 143(47): 19719-19730, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784713

RESUMO

Fusarium graminearum is a pathogenic fungus causing huge economic losses worldwide via crop infection leading to yield reduction and grain contamination. The process through which the fungal invasion occurs remains poorly understood. We recently characterized fusaoctaxin A in F. graminearum, where this octapeptide virulence factor results from an assembly line encoded in fg3_54, a gene cluster proved to be involved in fungal pathogenicity and host adaptation. Focusing on genes in this cluster that are related to fungal invasiveness but not to the biosynthesis of fusaoctaxin A, we here report the identification and characterization of fusaoctaxin B, a new octapeptide virulence factor with comparable activity in wheat infection. Fusaoctaxin B differs from fusaoctaxin A at the N-terminus by possessing a guanidinoacetic acid (GAA) unit, formation of which depends on the combined activities of the protein products of fgm1-3. Fgm1 is a cytochrome P450 protein that oxygenates l-Arg to 4(R)-hydroxyl-l-Arg in a regio- and stereoselective manner. Then, Cß-Cγ bond cleavage proceeds in the presence of Fgm3, a pyridoxal-5'-phosphate-dependent lyase, giving guanidinoacetaldehyde and l-Ala. Rather than being directly oxidized to GAA, the guanidine-containing aldehyde undergoes spontaneous cyclization and subsequent enzymatic dehydrogenation to provide glycociamidine, which is linearized by Fgm2, a metallo-dependent amidohydrolase. The GAA path in F. graminearum is distinct from that previously known to involve l-Arg:l-Gly aminidotransferase activity. To provide this nonproteinogenic starter unit that primes nonribosomal octapeptidyl assembly, F. graminearum employs new chemistry to process l-Arg through inert C-H bond activation, selective C-C bond cleavage, cyclization-based alcohol dehydrogenation, and amidohydrolysis-associated linearization.


Assuntos
Proteínas Fúngicas/biossíntese , Fusarium/metabolismo , Oligopeptídeos/biossíntese , Fatores de Virulência/biossíntese , Amidoidrolases/metabolismo , Carbono-Carbono Liases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Família Multigênica , Oligopeptídeos/genética , Fatores de Virulência/genética
20.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G719-G734, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643096

RESUMO

The activation peptide of mammalian trypsinogens typically contains a tetra-aspartate motif (positions P2-P5 in Schechter-Berger numbering) that inhibits autoactivation and facilitates activation by enteropeptidase. This evolutionary mechanism protects the pancreas from premature trypsinogen activation while allowing physiological activation in the gut lumen. Inborn mutations that disrupt the tetra-aspartate motif cause hereditary pancreatitis in humans. A subset of trypsinogen paralogs, including the mouse cationic trypsinogen (isoform T7), harbor an extended penta-aspartate motif (P2-P6) in their activation peptide. Here, we demonstrate that deletion of the extra P6 aspartate residue (D23del) increased the autoactivation of T7 trypsinogen threefold. Mutagenesis of the P6 position in wild-type T7 trypsinogen revealed that bulky hydrophobic side chains are preferred for maximal autoactivation, and deletion-induced shift of the P7 Leu to P6 explains the autoactivation increase in the D23del mutant. Accordingly, removal of the P6 Leu by NH2-terminal truncation with chymotrypsin C reduced the autoactivation of the D23del mutant. Homozygous T7D23del mice carrying the D23del mutation did not develop spontaneous pancreatitis and severity of cerulein-induced acute pancreatitis was comparable with that of C57BL/6N controls. However, sustained stimulation with cerulein resulted in markedly increased histological damage in T7D23del mice relative to C57BL/6N mice. Furthermore, when the T7D23del allele was crossed to a chymotrypsin-deficient background, the double-mutant mice developed spontaneous pancreatitis at an early age. Taken together, the observations argue that evolutionary expansion of the polyaspartate motif in mouse cationic trypsinogen contributes to the natural defenses against pancreatitis and validate the role of the P6 position in autoactivation control of mammalian trypsinogens.NEW & NOTEWORTHY Unwanted autoactivation of the digestive protease trypsinogen can result in pancreatitis. The trypsinogen activation peptide contains a polyaspartate motif that suppresses autoactivation. This study demonstrates that evolutionary expansion of these aspartate residues in mouse cationic trypsinogen further inhibits autoactivation and enhances protection against pancreatitis.


Assuntos
Mutação , Oligopeptídeos/genética , Pancreatite/metabolismo , Peptídeos/química , Motivos de Aminoácidos , Animais , Evolução Molecular , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Pancreatite/genética , Peptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA